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1 Introduction
Difference equation or discrete dynamical system is
diverse field which impact almost every branch of
pure and applied mathematics. Every dynamical sys-
tem xn+1 = f(xn, xn−2, · · · , xn−k) determines a dif-
ference equation and vise versa. Recently, there has
been great interest in studying difference equations
systems. One of the reasons for this is a necessity for
some techniques whose can be used in investigating
equations arising in mathematical models [1] describ-
ing real life situations in population biology [2], eco-
nomic, probability theory, genetics, psychology, etc.

The study of properties of rational difference e-
quations [3] and systems of rational difference equa-
tions has been an area of interest in recent years.
There are many papers in which systems of difference
equations have studied.

Cinar et al. [4] has obtained the positive solution
of the difference equation system

xn+1 =
m

yn
, yn+1 =

pyn
xn−1yn−1

.

Cinar [5] has obtained the positive solution of the
difference equation system

xn+1 =
1

yn
, yn+1 =

yn
xn−1yn−1

.

Also, Cinar [6] has obtained the positive solution
of the difference equation system

xn+1 =
1

zn
, yn+1 =

xn
xn−1

, zn+1 =
1

xn−1
.

Ozban [7] has investigated the positive solutions
of the system of rational difference equtions

xn+1 =
1

yn−k
, yn+1 =

yn
xn−myn−m+k

.

Papaschinopoulos et al. [8] investigated the glob-
al behavior for a system of the following two nonlin-
ear difference equations.

xn+1 = A+
yn

xn−p
, yn+1 = A+

xn
yn−q

, n = 0, 1, · · · ,

where A is a positive real number, p, q are positive in-
tegers, and x−p, · · · , x0, x−q, · · · , x0 are positive real
numbers.

In 2012, Zhang, Yang and Liu [9] investigated the
global behavior for a system of the following third or-
der nonlinear difference equations.

xn+1 =
xn−2

B + yn−2yn−1yn
, yn+1 =

yn−2

A+ xn−2xn−1xn
,

where A,B ∈ (0,∞), and the initial values
x−i, y−i ∈ (0,∞), i = 0, 1, 2.

Ibrahim [10] has obtained the positive solution of
the difference equation system in the modeling com-
petitive populations.

xn+1 =
xn−1

xn−1yn + α
, yn+1 =

yn−1

yn−1xn + β
.

Although difference equations are sometimes
very simple in their forms, they are extremely diffi-
cult to understand thoroughly the behavior of their so-
lutions. In book [11], Kocic and Ladas have studied
global behavior of nonlinear difference equations of
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higher order. Similar nonlinear systems of rational d-
ifference equations were investigated (see [12],[13]).
Other related results reader can refer ([14], [15], [16],
[17], [18],[19],[20],[21],[22],[23],[24],[25]).

Motivated by above discussion, our goal, in this
paper is to investigate the solutions of the two-
dimensional system of rational nonlinear difference e-
quations in the form

xn+1 =
xn

B+yn−ryn−s
,

yn+1 =
yn

A+xn−pxn−q
, n = 0, 1, · · · .

(1)

where A,B ∈ (0,∞), p, q, r, s ∈ N+, and the ini-
tial values x−max{p,q}, x1−max{p,q}, · · · , x0 ∈ (0,∞);
y−max{r,s}, y1−max{r,s}, · · · , y0 ∈ (0,∞). Moreover,
we have studied the local stability, global stability,
boundedness of solutions. We will consider some spe-
cial cases of (1) as applications. Finally, we give some
numerical examples.

2 Preliminaries
Let Ix, Iy be some intervals of real number and f :
Imx × Ity → Ix, g : Imx × Ity → Iy be continuously dif-
ferentiable functions. Then for every initial conditions
(xi, yj) ∈ Ix × Iy(i = −m,−m + 1, · · · ,−1, 0; j =
−t,−t+1, · · · , 0), the system of difference equations,
for n = 0, 1, 2, · · · ,

xn+1 = f(xn, · · · , xn−m, yn, · · · , yn−t),

yn+1 = g(xn, · · · , xn−m, yn, · · · , yn−t),
(2)

has a unique solution {(xn, yn)}∞n=−max{m,t}. A
point (x̄, ȳ) ∈ Ix × Iy is called an equilibrium
point of (2) if x̄ = f(x̄, · · · , x̄, ȳ, · · · , ȳ), ȳ =
g(x̄, · · · , x̄, ȳ, · · · , ȳ), namely, (xn, yn) = (x̄, ȳ) for
all n ≥ 0.

Let Ix, Iy be some intervals of real numbers, in-
terval Ix × Iy is called invariant for system (1) if, for
all n > 0,

x−m, x−1, · · · , x0 ∈ Ix, y−t, y−1, · · · , y0 ∈ Iy

⇒ xn ∈ Ix, yn ∈ Iy.

Definition 1 Assume that (x̄, ȳ) be a fixed point of
(2). Then
(i) (x̄, ȳ) is said to be stable relative to Ix × Iy
if for every ε > 0, there exists δ > 0 such that
for any initial conditions (xi, yj) ∈ Ix × Iy(i =
−m,−m+1, · · · ,−1, 0; j = −t,−t+1, · · · , 0), with∑0

i=−m |xi − x̄| < δ,
∑0

j=−t |yj − ȳ| < δ, implies

|xn − x̄| < ε, |yn − ȳ| < ε.
(ii) (x̄, ȳ) is called an attractor relative to Ix ×
Iy if for all (xi, yj) ∈ Ix × Iy(i = −m,−m +
1, · · · ,−1, 0; j = −t,−t + 1, · · · , 0), limn→∞ xn =
x̄, limn→∞ yn = ȳ.
(iii) (x̄, ȳ) is called asymptotically stable relative to
Ix × Iy if it is stable and an attractor.
(iv) Unstable if it is not stable.

Theorem 2 [11] Assume that X(n + 1) =
F (X(n)), n = 0, 1, · · · , is a system of difference e-
quations and X is the equilibrium point of this system
i.e., F (X) = X . If all eigenvalues of the Jacobian
matrix JF , evaluated at X lie inside the open unit disk
|λ| < 1, then X is locally asymptotically stable. If
one of them has modulus greater than one then X is
unstable.

Theorem 3 [12] Assume that X(n + 1) =
F (X(n)), n = 0, 1, · · · , is a system of difference e-
quations and X is the equilibrium point of this system,
the characteristic polynomial of this system about the
equilibrium point X is P (λ) = a0λ

n+a1λ
n−1+· · ·+

an−1λ + an = 0, with real coefficients and a0 > 0.
Then all roots of the polynomial p(λ) lie inside the
open unit disk |λ| < 1 if and only if

∆k > 0 for k = 1, 2, · · · , n, (3)

where ∆k is the principal minor of order k of the n×n
matrix

∆n =


a1 a3 a5 · · · 0
a0 a2 a4 · · · 0
0 a1 a3 · · · 0
...

...
...

. . .
...

0 0 0 · · · an

 .

3 Main results
Consider the system (1), if A < 1, B < 1, system
(1) has equilibrium (0, 0) and (

√
1−A,

√
1−B). In

addition, if A < 1, B = 1, then system (1) has in-
finite equilibrium points (x̄, 0), where x̄ ≥ 0, and if
A = 1, B < 1, then system (1) has infinite equilibri-
um points (0, ȳ), where ȳ ≥ 0. Finally, if A > 1 and
B > 1, (0, 0) is the unique equilibrium point.

Theorem 4 Assume that A < 1, B < 1. Then the
following statements are true.
(i) The equilibrium (0, 0) is locally unstable.
(ii) The unique positive equilibrium
(
√
1−A,

√
1−B) is locally unstable.
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Proof: (i) Let M = max{p, q, r, s}. We can easily
obtain that the linearized system of (1) about the equi-
librium (0, 0) is

Φn+1 = DΦn, (4)

where Φn = (xn, xn−1, · · · , xn−M , yn, yn−1, · · · , yn−M )T ,
D = (dij)(2M+2)×(2M+2) =

1
B · · · 0 0 0 · · · 0 0
1 · · · 0 0 0 · · · 0 0
...

. . .
...

...
... · · ·

...
...

0 · · · 1 0 0 · · · 0 0
0 · · · 0 0 1

A · · · 0 0
0 · · · 0 0 1 · · · 0 0
... · · ·

...
...

...
. . .

...
...

0 · · · 0 0 0 · · · 1 0


(5)

The characteristic equation of (4) is

f(λ) = λ2M
(
λ− 1

A

)(
λ− 1

B

)
= 0. (6)

This shows that the roots of characteristic equation
λ = 1

A and λ = 1
B lie outside unit disk. So the u-

nique equilibrium (0, 0) is locally unstable.
(ii) We can easily obtain that the linearized system

of (1) about the equilibrium (
√
1−A,

√
1−B) is

Φn+1 = GΦn, (7)

where Φn = (xn, xn−1, · · · , xn−M , yn, yn−1, · · · , yn−M )T ,
G =

1 · · · 0 · · · 0 · · · 0 0
1 · · · 0 · · · 0 · · · 0 0

. . .
1

. . .
1

. . .
0 · · · 0 · · · 0 · · · 1 0

0 · · · −
√
1−A · · · −

√
1−A · · · 0 0

0 · · · 0 · · · 0 · · · 0 0

0 · · · 0 · · · 0 · · · 0 0

0 · · · −
√
1−B · · · −

√
1−B · · · 0 0

0 · · · 0 · · · 0 · · · 0 0

0 · · · 0 · · · 0 · · · 0 0
1 · · · 0 · · · 0 · · · 0 0
1 · · · 0 · · · 0 · · · 0 0

. . .
1

. . .
1

. . .
0 · · · 0 · · · 0 · · · 1 0



in which −
√
1−B are in column M + r + 2 and

M + s + 2, respectively. −
√
1−A are in column

p+ 1 and q + 1, respectively.

Let λ1, λ2, · · · , λ2M+2 denote the
2M + 2 eigenvalues of Matrix G. Let
D = diag(d1, d2, · · · , d2M+2), di ̸= 0(i =
1, 2, · · · , 2M + 2) be a diagonal matrix,

Clearly D is invertible. Computing DGD−1, we
obtained DGD−1 =



1 · · · 0 · · · 0 · · · 0 0
d2
d1

· · · 0 · · · 0 · · · 0 0
. . .

dp+1

dp
. . .

dq+1

dq
. . .

0 · · · 0 · · · 0 · · · dM+1

dM
0

0 · · · −
√
1−A · · · −

√
1−A · · · 0 0

0 · · · 0 · · · 0 · · · 0 0

0 · · · 0 · · · 0 · · · 0 0
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0 · · · −
√
1−B · · · −

√
1−B · · · 0 0

0 · · · 0 · · · 0 · · · 0 0

0 · · · 0 · · · 0 · · · 0 0
1 · · · 0 · · · 0 · · · 0 0

dM+3

dM+2
· · · 0 · · · 0 · · · 0 0

. . .
dM+r+2

dM+r+1

. . .
dM+s+2

dM+s+1

. . .
0 · · · 0 · · · 0 · · · d2M+2

d2M+1
0


It is well known that G has the same eigenvalues as
DGD−1, we obtain that
max1≤k≤2M+2 |λk|

= ∥DED−1∥
= max

{
d2d

−1
1 , · · · , dM+1d

−1
M , dM+3d

−1
M+2, · · · ,

d2M+2d
−1
2M+1, 1 + 2

√
1−A, 1 + 2

√
1−B

}
> 1

It follows from Theorem 3 that equilibrium
(
√
1−A,

√
1−B) is locally unstable. ⊓⊔

Theorem 5 Assume that A > 1, B > 1. Then the
equilibrium (0, 0) is globally asymptotically stable.

Proof: For A > 1, B > 1, from Theorem 4 (0, 0)
is locally asymptotically stable. From (1), it is easy
to see that every positive (xn, yn) is bounded, i. e.,
0 ≤ xn ≤ x0, 0 ≤ yn ≤ y0. Now, it is sufficient to
prove that(xn, yn) is decreasing. From (1), we have

xn+1 = xn
B+yn−ryn−s

≤ xn
B < xn,

yn+1 = yn
A+xn−pxn−q

≤ yn
A < yn.

This implies that the sequences {xn} and {yn} are de-
creasing. Hence, limn→∞ xn = 0, limn→∞ yn = 0.
Therefore, the equilibrium (0, 0) is globally asymp-
totically stable. ⊓⊔

Theorem 6 Let A < 1 and B < 1. Then, for solution
(xn, yn) of system (1) following statements are true.
(i) If xn → 0, then yn → ∞.
(ii) If yn → 0, then xn → ∞.

4 Rate of convergence
In order to study the rate of convergence of positive
solutions of (1) which converge to equilibrium point
(0, 0) of this system, first we consider the following
results that gives the rate of convergence of solution
of a system of difference equations.

Xn+1 = [A+B(n)]Xn (8)

where Xn be m dimensional vector,A ∈ Cm×m is
a constant matrix. B : Z+ → Cm×m is a matrix
function satisfying

∥B(n)∥ → 0 (9)

as n → ∞, where ∥ · ∥ be any matrix norm which is
associated with the vector norm

∥(x, y)∥ =
√
x2 + y2.

Proposition 7 (Perrons Theorem)[26] Suppose that
condition (9) holds. If Xn is any solution of (8), then
Xn = 0 for all large n or

ρ = lim
n→∞

∥Xn+1∥
∥Xn∥

. (10)

exists and is equal to the modulus of one of the eigen-
values of matrix A.

Proposition 8 [26] Suppose that condition (9) holds.
If Xn is any solution of (8), then Xn = 0 for all large
n or

ρ = lim
n→∞

n

√
∥Xn+1∥. (11)

exists and is equal to the modulus of one of the eigen-
values of matrix A.

Let(xn, Yn) be an arbitrary positive solution of
system (1) such that limn→∞ xn = 0, limn→∞ yn =
0. It follows from (1) that

xn+1 − 0 =
xn

B + yn−ryn−s
=

1

B + yn−ryn−s
xn

and

yn+1 − 0 =
yn

A+ xn−pyn−q
=

1

A+ xn−pxn−q
yn

Let E1
n = xn − 0, E2

n = yn − 0, then we have

E1
n+1 = AnE

1
n +BnE

2
n, E2

n+1 = CnE
1
n +DnE

2
n.

where

An =
1

B + yn−ryn−s
, Bn = 0,
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Cn = 0, Dn =
1

A+ xn−pxn−q
.

Moreover

lim
n→∞

An =
1

B
, lim

n→∞
Dn =

1

A
.

Now the limiting system of error terms can be written
as (

E1
n+1

E2
n+1

)
=

(
1/B 0
0 1/A

)(
E1

n

E2
n

)
,

which is similar to linearized system of (1) about the
equilibrium point (0, 0).

Using Proposition 7 and Proposition 8, we have
following result.

Theorem 9 Assume that (xn, yn) be a positive solu-
tion of (1) such that limn→∞ xn = 0, limn→∞ yn =
0, then the error vector En = (E1

n, E
2
n)

T of every
solution of (1) satisfies the following asymptotic rela-
tions

lim
n→∞

n

√
∥En∥ = |λ1,2Fj(0, 0)|,

lim
n→∞

∥En+1∥
∥En∥

= |λ1,2Fj(0, 0)|,

where λ1,2Fj(0, 0) =
1
A or 1

B are the characteristic
of Jacobian matrix FJ(0, 0).

5 Numerical examples
In order to illustrate the results of the previous section-
s and to support our theoretical discussions, we con-
sider several interesting numerical examples in this
section. These examples represent different types of
qualitative behavior of solutions to nonlinear differ-
ence equations and system of nonlinear difference e-
quations.

Example 1. If the initial conditions x0 = 0.6, x−1 =
0.2, x−2 = 0.8, x−3 = 0.3, x−4 = 0.4, y0 =
0.6, y−1 = 0.3, y−2 = 0.5, y−3 = 0.2, y−4 = 0.8
and A = 1.2, B = 1.3, r = 1, s = 3, p = 2, q = 4,
we have the following system

xn+1 =
xn

1.3 + yn−1yn−3
,

yn+1 =
yn

1.2 + xn−2xn−4
.

It is clear that A > 1, B > 1. Then the equilibrium
(0, 0) is globally asymptotically stable.(See Theorem
3.2 , Fig. 1)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

x n &
 y

n

 

 

x
n

y
n

Figure 1: The fixed point (0,0) is globally asymptoti-
cally stable
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x
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y−n

Figure 2: The fixed point (0,0) and
(
√
1−A,

√
1−B) is unstable

Example 2. If If the initial conditions x0 =
2.6, x−1 = 7.2, x−2 = 8.8, x−3 = 2.3, x−4 =
8.4, y0 = 9.6, y−1 = 7.3, y−2 = 5.5, y−3 =
6.2, y−4 = 7.8 and A = 0.9, B = 0.7, r = 1, s =
3, p = 2, q = 4, we have the following system

xn+1 =
xn

0.7 + yn−1yn−3
, yn+1 =

yn
0.9 + xn−2xn−4

.

It is clear that A < 1, B < 1. Then equilibrium (0, 0)
and (

√
1−A,

√
1−B) are unstable.(See Theorem 4,

Theorem 6, Fig 2)

6 Conclusion and future work
In this paper, we have studied the behavior of posi-
tive solution to system (1) under some conditions. If
A > 1 and B > 1, the system (1) has an unique equi-
librium (0, 0) which is globally asymptotically stable.
If A < 1 and B < 1, the system (1) has equilibrium
(0, 0) and (

√
1−A,

√
1−B), and these equilibrium-

s are unstable. We will study the behavior of positive
solution to system under the conditions A > 1, B < 1
or A = B = 1 in the future.

WSEAS TRANSACTIONS on MATHEMATICS Qianhong Zhang, Wenzhuan Zhang

E-ISSN: 2224-2880 372 Volume 16, 2017



Acknowledgements: This work was financially sup-
ported by the National Natural Science Foundation of
China (Grant No. 11361012), and the Scientific Re-
search Foundation of Guizhou Provincial Science and
Technology Department([2013]J2083, [2009]J2061),
and the Natural Science Foundation of Guizhou
Provincial Educational Department (No.2008040).

References:

[1] M.P. Hassell and H.N. Comins, Discrete time
models for two-species competition, Theoretical
Population Biology, Vol. 9, no. 2,1976, pp. 202–
221.

[2] J.E. Franke and A.A. Yakubu, Mutual exclusion
versus coexistence for discrete competitive Sys-
tems, Journal of Mathematical Biology, Vol.30,
no. 2,1991, pp. 161–168.

[3] B. Iricanin and S. Stevic, Some Systems of Non-
linear Difference Equations of Higher Order
with Periodic Solutions, Dynamics of Continu-
ous, Discrete and Impulsive Systems. Series A
Mathematical Analysis, Vol. 13, No. 3-4, 2006,
pp. 499–507.

[4] C. Cinar, I. Yalcinkaya and R. Karatas, On the
positive solutions of the difference equation sys-
tem xn+1 =

m
yn
, yn+1 =

pyn
xn−1yn−1

, J. Inst. Math.
Comp. Sci., Vol.18, 2005, pp.135–136.

[5] C. Cinar, On the positive solutions of the dif-
ference equation system xn+1 = 1

yn
, yn+1 =

yn
xn−1yn−1

, Applied Mathematics and Computa-
tion, Vol.158, 2004, pp. 303–305.

[6] C. Cinar and I. Yalcinkaya, On the positive solu-
tions of the difference equation system xn+1 =
1
zn
, yn+1 = xn

xn−1
, zn+1 = 1

xn−1
, Internation-

al Mathematical Journal, Vol.5, 2004, pp. 525–
527.

[7] A.Y. Ozban, On the positive solutions of the
system of rational difference equations xn+1 =

1
yn−k

, yn+1 = yn
xn−myn−m−k

, J. Math. Anal. Ap-
pl., Vol.323, 2006, pp. 26–32.

[8] G. Papaschinopoulos and C.J. Schinas, On a sys-
tem of two nonlinear difference equations, J.
Math. Anal. Appl. Vol. 219, 1998, pp. 415–426.

[9] Q. Zhang,L. Yang and J. Liu, Dynamics of a sys-
tem of rational third-order difference equation,
Advances in Difference Equations 2012, 2012:
136, pp. 1–8.

[10] T.F. Ibrahim, Two-dimensional fractional system
of nonlinear difference equations in the model-
ing competitive populations, International Jour-
nal of Basic & Applied Sciences, Vol.12, no. 05,
2012, pp. 103–121.

[11] V.L. Kocic and G. Ladas, Global behavior of
nonlinear difference equations of higher order
with application , Kluwer Academic Publishers,
Dordrecht, 1993.

[12] M.R.S. Kulenovic and O. Merino, Discrete dy-
namical systems and difference equations with
mathematica, Chapman and Hall/CRC, Boca
Raton, London, 2002.

[13] K. Liu , Z. Zhao, X. Li and P. Li, More on three-
dimensional systems of rational difference equa-
tions, Discrete Dynamics in Nature and Society,
Vol. 2011, Article ID 178483, 2011.

[14] Q.Zhang, W.Zhang, On a system of two high-
order nonlinear difference equations, Advances
in Mathematical Physics, Vol. 2014 (2014), Ar-
ticle ID 729273, 8 pages.

[15] Q. Zhang, W.Zhang, Y,Shao, J.Liu, On the sys-
tem of high order rational difference equation-
s, International Scholarly Research Notices Vol-
ume 2014 (2014), Article ID 760502, 5 pages

[16] Q. Zhang, J. Liu, and Z. Luo, Dynamical behav-
ior of a system of third-order rational difference
equation, Discrete Dynamics in Nature and So-
ciety, vol. 2015, pp. 1C6, 2015.

[17] T.F. Ibrahim and Q. Zhang, Stability of an anti-
competitive system of rational difference equa-
tions , Archives Des Sciences, Vol. 66, no. 5,
2013, pp. 44–58.

[18] E.M.E. Zayed and M.A. El-Moneam, On the
global attractivity of two nonlinear difference e-
quations, J. Math. Sci., Vol. 177, 2011, pp. 487–
499.

[19] N. Touafek and E.M. Elsayed, On the period-
icity of some systems of nonlinear difference e-
quations, Bull. Math. Soc. Sci. Math. Roumanie,
Vol. 2, 2012, pp. 217–224.

[20] N. Touafek and E.M. Elsayed, On the solution-
s of systems of rational difference equations,
Mathematical and Computer Modelling, Vol. 55,
2012, pp. 1987–1997.

[21] S. Kalabusic, M.R.S. Kulenovic and E. Pilav,
Dynamics of a two-dimensional system of ra-
tional difference equations of Leslie–Gower

WSEAS TRANSACTIONS on MATHEMATICS Qianhong Zhang, Wenzhuan Zhang

E-ISSN: 2224-2880 373 Volume 16, 2017



type, Advances in Difference Equations, 2011,
doi:10.1186/1687-1847-2011-29.

[22] Q. Din, Global behavior of a plant-herbivore
model, Advance sin Difference Equations,
1(2015), 1-12.

[23] Q. Din, K. A. Khan, A. Nosheen, Stability anal-
ysis of a system of exponential difference equa-
tions, Discrete Dyn. Nat. Soc., Volume 2014, Ar-
ticle ID 375890, 11 pages.

[24] Q. Din, Global stability of a population model,
Chaos Soliton Fract., Vol. 59, 2014, pp. 119-128.

[25] Q. Din, T. Donchev, Global character of a host-
parasite model, Chaos Soliton Fract., Vol. 54,
2013, pp. 1-7.

[26] M. Pituk, More on Poincares and Perrons theo-
rems for difference equations, J. Diff. Eq. App.,
Vol. 8, 2002, pp. 201-216.

WSEAS TRANSACTIONS on MATHEMATICS Qianhong Zhang, Wenzhuan Zhang

E-ISSN: 2224-2880 374 Volume 16, 2017




